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Unique relationship between the catalyst structure and regio-
and stereoselectivity in the chiral quaternary ammonium bifluor-
ide–catalyzed asymmetric addition of silyl nitronates to �,�-un-
saturated aldehydes has been reported.

We recently disclosed highly enantioselective Michael addi-
tion of silyl nitronates to �,�-unsaturated aldehydes catalyzed by
designer chiral quaternary ammonium bifluoride 1j under mild
conditions, offering direct access to both optically active �-nitro
aldehydes and their enol silyl ethers as exemplified in
Scheme 1.1,2 The success of this asymmetric Michael reaction
heavily relied on the appropriately modified structure of the cata-
lyst, which played a key role in primarily leaving the aldehyde
carbonyl intact and at the same time controlling the stereochem-
istry of two newly created adjacent stereogenic carbon centers
through the formation of chiral ammonium nitronate. This obser-
vation prompted us to make a thorough evaluation of the relation-
ship between the structure of chiral quaternary ammonium bi-
fluoride and the regio- and stereoselectivity of the addition of
silyl nitronates to enals. In this letter, we wish to describe the re-
sults of this study, uncovering the crucial elements for establish-
ing the fluoride–catalyzed asymmetric Michael addition of silyl
nitronates to �,�-unsaturated aldehydes.

We chose the addition of trimethylsilyl nitronate 33 derived
from nitropropane to trans-cinnamaldehyde as a representative re-
action system, and examined the effect of the catalyst structure on
the regio- and stereoselectivity. Initially, the reaction of 3 with
trans-cinnamaldehyde was conducted using 5mol% of tetrabutyl-
ammonium fluoride (TBAF) as catalyst in THF at �78 �C, which

afforded a mixture of 1,4-adduct 4 and 1,2-adduct 5 in a ratio of
1.4:1 (89% combined yield) after treatment with 1N HCl, and
the syn/anti ratio of 4 was revealed to be 55:45 (Entry 1 in
Table 1). With this information at hand, we then attempted the re-
action with chiral quaternary ammonium bifluoride 1a4 (2mol%)
under otherwise identical conditions5 and, surprisingly, observed
lowered 1,4-selectivity with slightly improved diastereoselectivi-
ty (Entry 2). Although certain asymmetric induction was attained
for both syn and anti isomers, this result indicated that it was not
solely the rigid N-spiro structure created by the two simple chiral
binaphthyl subunits that delivered the significant alteration of the
regiochemical preference. Even use of 1b4 having phenyl group at
3,30-position of one binaphthyl unit (R1) as catalyst provided sim-
ilar results (Entry 3), and further electronic and steric modification
by the introduction of trifluoromethyl (1c)6 and tert-butyl (1d)
substituents at para position of the 3,30-phenyl group, respective-
ly, had only a minor effect on both regio- and stereoselectivity
(Entries 4 and 5). Interestingly, however, dramatic improvement
of 1,4-selectivity was achieved when 1e1,7 possessing 3,5-bis(tri-
fluoromethyl)phenyl group as R1 was used as catalyst and the
enantiomeric excess of syn-4 was enhanced to 90% ee (Entry
6). This phenomenon could not be accounted for by mere elec-
tronic effect, because the reactions under the influence of 3,5-di-
fluorophenyl- and 3,4,5-trifluorophenyl–substituted 1f and 1g,4 re-
spectively, resulted in the substantial decrease of 1,4-selectivity
(Entries 7 and 8). While the results of an additional investigation
using catalyst 1h8 with 3,5-dimethylphenyl group seemed to sup-
port the contribution of an electron-withdrawing property of the
trifluoromethyl substituent (Entry 9), the considerable jump in re-
gio- and stereoselectivity with introduction of isopropyl group in
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place of methyl substituent (1i) strongly suggested the importance
of a steric demand of the trifluoromethyl group (Entry 10). Indeed,
the highest 1,4-selectivity and enantioselectivity were attained by
the employment of 1j1,9 having 3,5-di-tert-butylphenyl group as
catalyst (Entry 11), which confirmed the prime value of a sterical-
ly hindered substituent rather than electron-withdrawing one spe-
cifically at 3,5-position of the 3,30-phenyl group for controlling
the regio- and stereochemistry of the present addition.

Based on the results of this survey by varying the 3,30-aromat-
ic substituents, we finally evaluated the contribution of the bi-
naphthyl structure particularly in association with 3,5-di-tert-bu-
tylphenyl substituent. Unexpectedly, replacing the simple chiral
binaphthyl moiety of 1j by achiral biphenyl (2a) ruined the regio-
as well as stereoselectivity (Entry 12), and switching the catalyst
to 2b consisting of a simple chiral binaphthyl unit and an achiral
biphenyl one with the requisite 3,5-di-tert-butylphenyl group at
3,30-position led to the preferential formation of 1,2-adduct 5 (En-
try 13). The present unique observation clearly showed the crucial
importance of the harmony of the primary N-spiro structure with
two chiral binaphthyl subunits and 3,30-phenyl group with bulky
3,5-substituents. This criterion, together with the beneficial sol-
vent effect provided by toluene in this case, appeared essential
to establish highly enantioselective Michael addition of silyl ni-
tronates to �,�-unsaturated aldehydes, and should be further ap-
preciated in the development of other asymmetric Michael addi-
tion processes based on this approach.10
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Table 1. Effect of the catalyst structure on the regio- and stereoselec-
tivity of chiral ammonium bifluoride–catalyzed asymmetric addition
of silyl nitronate 3 to trans-cinnamaldehydea
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Entry Catalyst
Yieldb

4/5c
syn/anti % ee of 4 (config)e,f

(%) of 4c{e syn (3S,4R) anti

1 TBAF 89 1.4:1 55:45
2 1a 99 1.1:1 69:31 39 31
3 1b 99 1.1:1 66:34 37 35
4 1c 99 2.4:1 70:30 52 48
5 1d 99 1.9:1 68:32 41 41
6 1e 98 16:1 76:24 90 52
7 1f 99 3.1:1 66:34 41 12
8 1g 99 2.4:1 66:34 38 11
9 1h 99 2.4:1 67:33 33 19
10 1i 98 10:1 76:24 88 59
11 1j 99 19:1 76:24 94 74
12 2a 95 3.2:1 52:48 66 48
13 2b 75 1:3.5 70:30 25 5

aThe reaction was carried out with 1.2 equiv. of 3 in the presence of

TBAF (5mol%), 1 or 2 (2mol%) in THF (0.1M substrate concentra-

tion) at�78 �C for 1–1.5 h followed by treatment with 1N HCl at 0 �C.
bCombined isolated yield. cDetermined by 1HNMR analysis.
dDiastereomeric ratio of 4. eRelative and absolute stereochemistries

of major syn-4 were established by X-ray crystallographic analysis of

its acetal with (2R,3R)-2,3-butanediol.11 fEnantiopurity was determined

by GLC analysis using a chiral column [Astec Chiradex G-TA (30m �
0.25mm)].
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